Extensions 1→N→G→Q→1 with N=C3xHe3 and Q=C22

Direct product G=NxQ with N=C3xHe3 and Q=C22
dρLabelID
C2xC6xHe3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C3xHe3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xHe3):1C22 = S3xC32:C6φ: C22/C1C22 ⊆ Out C3xHe31812+(C3xHe3):1C2^2324,116
(C3xHe3):2C22 = C3xC32:D6φ: C22/C1C22 ⊆ Out C3xHe3186(C3xHe3):2C2^2324,117
(C3xHe3):3C22 = He3:5D6φ: C22/C1C22 ⊆ Out C3xHe31812+(C3xHe3):3C2^2324,121
(C3xHe3):4C22 = S3xHe3:C2φ: C22/C1C22 ⊆ Out C3xHe3186(C3xHe3):4C2^2324,122
(C3xHe3):5C22 = He3:6D6φ: C22/C1C22 ⊆ Out C3xHe327(C3xHe3):5C2^2324,124
(C3xHe3):6C22 = C6xC32:C6φ: C22/C2C2 ⊆ Out C3xHe3366(C3xHe3):6C2^2324,138
(C3xHe3):7C22 = C2xS3xHe3φ: C22/C2C2 ⊆ Out C3xHe3366(C3xHe3):7C2^2324,139
(C3xHe3):8C22 = C2xHe3:4S3φ: C22/C2C2 ⊆ Out C3xHe354(C3xHe3):8C2^2324,144
(C3xHe3):9C22 = C6xHe3:C2φ: C22/C2C2 ⊆ Out C3xHe354(C3xHe3):9C2^2324,145
(C3xHe3):10C22 = C2xHe3:5S3φ: C22/C2C2 ⊆ Out C3xHe3366(C3xHe3):10C2^2324,150


׿
x
:
Z
F
o
wr
Q
<