Extensions 1→N→G→Q→1 with N=C3×He3 and Q=C22

Direct product G=N×Q with N=C3×He3 and Q=C22
dρLabelID
C2×C6×He3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C3×He3 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3×He3)⋊1C22 = S3×C32⋊C6φ: C22/C1C22 ⊆ Out C3×He31812+(C3xHe3):1C2^2324,116
(C3×He3)⋊2C22 = C3×C32⋊D6φ: C22/C1C22 ⊆ Out C3×He3186(C3xHe3):2C2^2324,117
(C3×He3)⋊3C22 = He35D6φ: C22/C1C22 ⊆ Out C3×He31812+(C3xHe3):3C2^2324,121
(C3×He3)⋊4C22 = S3×He3⋊C2φ: C22/C1C22 ⊆ Out C3×He3186(C3xHe3):4C2^2324,122
(C3×He3)⋊5C22 = He36D6φ: C22/C1C22 ⊆ Out C3×He327(C3xHe3):5C2^2324,124
(C3×He3)⋊6C22 = C6×C32⋊C6φ: C22/C2C2 ⊆ Out C3×He3366(C3xHe3):6C2^2324,138
(C3×He3)⋊7C22 = C2×S3×He3φ: C22/C2C2 ⊆ Out C3×He3366(C3xHe3):7C2^2324,139
(C3×He3)⋊8C22 = C2×He34S3φ: C22/C2C2 ⊆ Out C3×He354(C3xHe3):8C2^2324,144
(C3×He3)⋊9C22 = C6×He3⋊C2φ: C22/C2C2 ⊆ Out C3×He354(C3xHe3):9C2^2324,145
(C3×He3)⋊10C22 = C2×He35S3φ: C22/C2C2 ⊆ Out C3×He3366(C3xHe3):10C2^2324,150


׿
×
𝔽